تبلیغات
نخبگان ریاضی - نمایش اعداد اَصَم (گنگ):

نمایش اعداد اَصَم (گنگ):

دوشنبه 19 اسفند 1387 11:29 ب.ظ

نویسنده : راشد رزوقی

فرض کنیم یک عدد اصم (گنگ) است ؛ جای تقریبی این عدد را می توان به کمک محاسبه ی جذر تقریبی روی محور مشخص کرد.

مثال: عدد بین کدام دو عدد صحیح متوالی قرار دارد ؟

حل:مقدار تقریبی جذر 5 از عدد 2 بیشتر و از عدد 3 کمتر است ؛ یعنی : اختلاف عدد ی که بین 2 و 3 باشد با عدد 3 بین دو عدد صحیح متوالی صفر و یک قرار دارد . یعنی :   

 

برای مشخص کردن جای دقیق تری از روی محور به ترتیب زیر عمل می کنیم:

الف: مثلث قائم الزاویه مناسبی که طول آن باشد را رسم می کنیم .

ب: دهانه ی پر گار را به اندازه ی وتر این مثلث باز می کنیم و از مبدأ علامتی روی محور در جهت مثبت محور می زنیم.

مثال: در شکل مقابل تعداد ی مثلث قائم الزاویه رسم شده است که در هر کدام یک ضلع زاویه قائمه به طول 1 واحد است. طول پاره خط های OD , OC , OB , OA را حساب کنید.

 

 

حل:

 

نکته:چنانچه مثلث های قائم الزاویه را یکی بعد از دیگری مانند مثال قبل رسم کنیم، شکل زیبای حلزونی بوجود می آید که به کمک آن عددهای , , , و.... را می توان مشخص کرد.

 

می توانیم روی محور اعداد، نقطه ی متناظر با هر یک از عددهای , , , و ........ را مشخص کنیم. برای این کار به ترتیب زیر عمل می کنیم:

الف: مثلث قائم الزاویه ای با اضلاع 1cm و وتر OA را روی محور اعداد در نظر می گیریم . می دانیم اندازه ی OA با استفاده از رابطه ی فیثاغورس بدست می آید . حال به مرکز O و شعاع OA دهانه ی پرگار را باز کرده و یک کمان می زنیم تا جهت مثبت محور اعداد حقیقی را در نقطه ی قطع کند . نقطه ی متناظر با عدد بدست می آید.

 

ب: مثلث قائم الزاویه ای با اضلاع  و وتر OB را روی محور اعداد در نظر می گیریم .می دانیم اندازه ی OB با استفاده از رابطه ی فیثاغورس بدست می آید . حال به مرکز O  و شعاع OB دهانه ی پرگار را باز کرده و یک کمان می زنیم تا جهت مثبت محور اعداد حقیقی را در نقطه ی قطع کند.

 

ج: به همین ترتیب اعداد , ,  و....را نیز می توان روی محور اعداد حقیقی نشان داد . کافی است مثلث های قائم الزاویه را به همین ترتیب روی محور ادامه دهیم. شکل زیر چگونگی کار را نشان می دهد.

 

 

 

 

 

1. اگر n عددی طبیعی و مجذور کامل نباشد، همواره عددی اصم است.

 

2. اگر x عددی گویا و y عددی گنگ باشد، آنگاه عددی گنگ (اصم) است.

 

3. حاصل جمع دو عدد گنک، همواره عدد گنگ نمی باشد.

 

4. حاصل تفریق دو عدد گنگ، همواره عدد گنگ نمی باشد.

 

5. حاصل ضرب دو عدد گنگ، همواه عدد گنگ نمی باشد.

 

6. حاصل تقسیم دو عدد گنگ، همواره عدد گنگ نمی باشد.

 

7. اعداد اصم فقط به صورت نمی باشند، بلکه هر عددی که نتوان آن را به صورت نماد اعشاری متناوب نوشت اصم می باشد.

 

8. هر فاصله ای هر چند کوچک از اعداد حقیقی ، بی شمار عضو دارد.

 

 

 




دیدگاه ها : نظرات
آخرین ویرایش: - -